Solar Mining Concept Outline

Executive Summary

Solar-Powered Bitcoin Mining

Our project focuses on implementing solar-powered Bitcoin mining operations with a scalable production capacity ranging from 1 to 10 MW. By harnessing renewable energy, we aim to establish a sustainable and environmentally-friendly approach to Bitcoin mining. Investments for this project are estimated to range from \$700/kW to \$1476/kW, depending on the ASIC model and scale of production. These funds will cover PV infrastructure, mining and cooling equipment, and initial operating costs.

Key financial projections indicate strong revenue from mining rewards, as our solar-powered operations will significantly reduce reliance on traditional energy sources.

This not only contributes to environmental sustainability but also offers potential cost savings and long-term profitability.

In summary, our solar-powered Bitcoin mining project aims to transform the cryptocurrency industry by providing an eco-friendly and sustainable alternative to traditional energy-intensive mining practices.

Complete Turn-Key Solutions

Feasibility Studies and Site Assessments

Thorough analysis of environmental conditions, water resources, and economic viability.

System Design and Engineering

Tailored design and engineering of integrated systems, including desalination, solar power generation, and agricultural infrastructure.

Procurement and Installation

Sourcing and installation of all necessary equipment and materials.

Operational Training and Support

Training local personnel in system operation and maintenance, along with ongoing technical support.

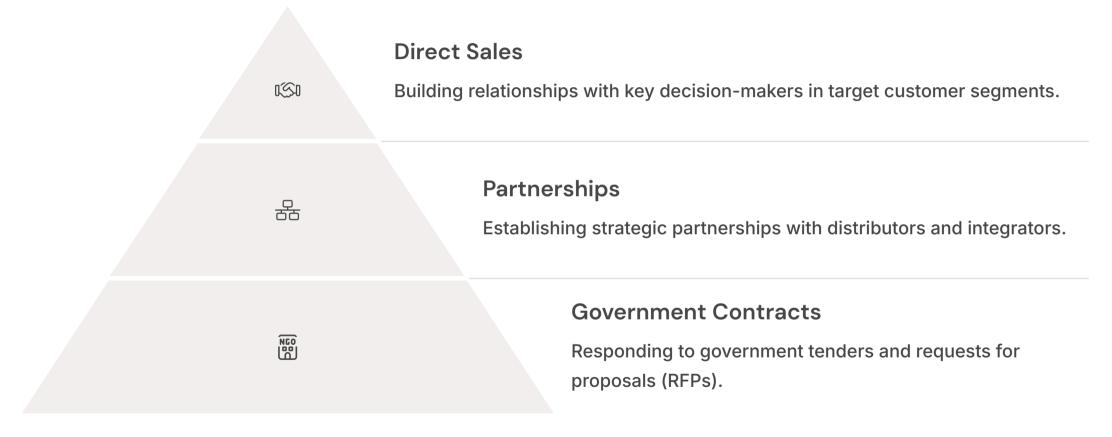
Project Management

Complete project oversight from inception to completion, ensuring timely and efficient execution.

Consulting Services

Environmental Impact Assessments

Evaluating the potential environmental impacts of proposed projects.


Renewable Energy Integration

Advising on the integration of solar and other renewable energy sources.

Community Engagement and Development

Facilitating collaboration with local communities and promoting sustainable livelihoods.

Sales Strategy

Our sales approach focuses on providing customized solutions and proposals to clients, leveraging partner networks to expand market reach, and developing strong relationships with government procurement agencies.

Technology and Equipment

Solar Panels

- High-efficiency photovoltaic panels
- Inverters and electrical distribution equipment
- Tracking systems (optional)

Mining Hardware

- High-performance mining rigs and cooling systems
- Network infrastructure and data storage

Personnel and Staffing

Our staffing plan involves developing an organizational structure, recruiting qualified personnel with the required skills and expertise, and providing comprehensive training programs.

CAPEX and ROI

Our solar-powered Bitcoin mining project offers two operational scenarios to cater to different energy requirements and investment capabilities.

Scenario 1: Solar-Powered Mining without Energy Storage

Solar-powered mining operations solely during daylight hours, without energy storage systems.

More cost-effective solution for investors

• Eliminates upfront expenses for energy storage

Sunlight availability: 1784 hours per year (Limassol, Cyprus)

Mining uptime: 19%

ROI ranges from 10% to 15% depending on ASIC model

Scenario 2: Solar-Powered Mining with Energy Storage

Integrating energy storage systems for uninterrupted, 24/7 Bitcoin mining operations.

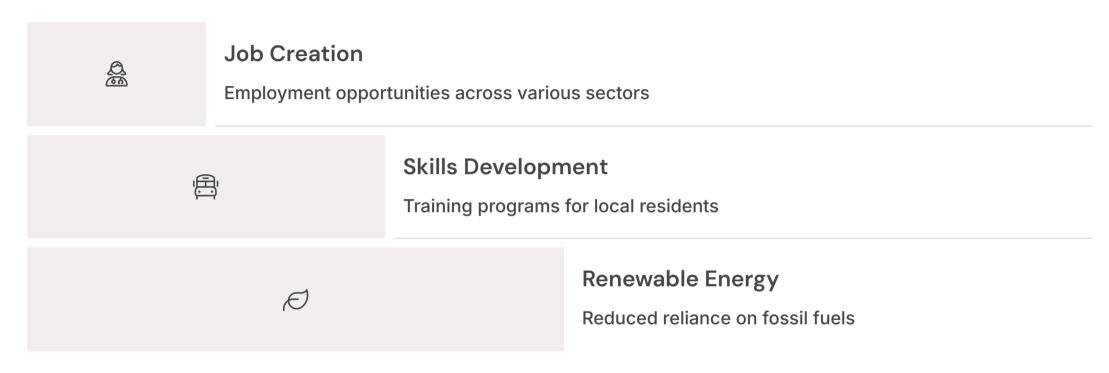
Stores excess solar energy during daylight hours

- Provides continuous power for mining
- Mining uptime: 98%
- ROI ranges from 5% to 13% depending on ASIC model

1

Scenario 1 in Numbers

ASIC	Th/s	kW	CAPEX/kW	Efficiency	Revenue, year		Payback	ROI
ASIC	111/5			per kWh	kW	ASIC	year	KOI
M60S	170	3.15	\$2,436	\$0.11	\$335	\$1,056	7.3	14%
M50S	126	3.28	\$1,939	\$0.08	\$239	\$783	8.1	12%
<u>M30S</u>	100	3.40	\$1,759	\$0.06	\$183	\$621	9.6	10%
<u>M20S</u>	68	3.36	\$1,669	\$0.04	\$126	\$422	13.3	8%


	Farm revenue BTC/kW/year @ 3.25 BTC per block					
kW	100	300	500	1000	5000	
M60S	0.352	1.057	1.762	3.523	17.616	
M50S	0.251	0.753	1.255	2.511	12.554	
M30S	0.192	0.576	0.960	1.920	9.600	
M20S	0.132	0.396	0.661	1.321	6.606	

Scenario 2 in Numbers

ASIC	Th/s	kW	CAPEX/kW	Efficiency	Revenue, year		Payback	ROI
7010 111/5	111/5			per kWh	kW	ASIC	year	KOI
M60S	170	3.15	\$6,416	\$0.11	\$961	\$3,028	6.7	15%
M50S	126	3.28	\$5,919	\$0.08	\$685	\$2,244	8.6	12%
M30S	100	3.40	\$5,739	\$0.06	\$524	\$1,781	11.0	9%
<u>M20S</u>	68	3.36	\$5,649	\$0.04	\$360	\$1,211	15.7	6%

	Farm revenue BTC/kW/year @ 3.25 BTC per block					
kW	100	300	500	1000	5000	
M60S	1.010	3.031	5.051	10.103	50.514	
M50S	0.720	2.160	3.600	7.200	36.000	
M30S	0.551	1.652	2.753	5.506	27.529	
M20S	0.379	1.137	1.894	3.789	18.943	

Social and Environmental Impact

The project will generate employment opportunities across various sectors, including construction, operations and maintenance. This will contribute to local economic development and reduce unemployment rates. Training programs will be implemented to equip local residents with the skills needed to work in the project, enhancing their employability and contributing to long-term economic development. The solar-powered operations will reduce reliance on fossil fuels and minimize greenhouse gas emissions, contributing to climate change mitigation.

Technical Specifications

ASIC Model	Hash Rate	Power Consumption
Whatsminer M20S	68Th	3.3 kW
Whatsminer M30S	100Th	3.4 kW
Whatsminer M50S	126Th	3.2 kW
Whatsminer M60S	170Th	3.15 kW

Product: Imagine8 - mobile Bitcoin mining data center Power Capacity: 1000/2000 kW Miner Capacity: 300 - 600 units New Feature: Imagine8 Ver 4.0 water blocks - upgrade for air cooling based asics. Design: Modular design to ensure reliable operation Heat Dissipation: cooling tower or dry cooler. Monitoring: Smart PDU remote monitoring